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A solution of the nonlinear filtration equations of multicomponent systems is 
proposed in the form of steady waves and their development over time is analyzed 
as a function of the c~haracter of mass-transfer processes. 

In designing gas, gas--condensate, and gas--condensate-petroleum fields, one of the basic 
problems is to choose well-founded technological parameters of the working. This involves 
solving gas-hydrodynamic problems, taking account of the characteristic phenomena occurring 
in the bed. 

For gas--condensate fileds, mass-transfer (sorption, condensation, evaporation) between 
the porous medium and the gas-condensate system and also between the individual components 
of the gas--condensate system are characteristic. In this connection, the mass-continuity 
equation is written in the form 

0 
div (Of) q- ~ (pro) = [. (.K) 

O t  

Since in developing a field the temperature there changes only slightly in comparison 
with the pressure, all the quantities appearing in Eq. (i) may be regarded as depending only 
on the pressure. Mass-transfer processes are related to the pressure variation in a complex 
manner. Thus, at the beginning of the working, decrease in pressure is associated with 
deposition of condensate from the gas phase to the porous medium; with further decrease in 
pressure, the condensate begins to evaporate. The gas-phase mass at first begins to increase 
with evaporation and then decreases on account of processes of retrograde condensation. The 
period of pressure reduction is characterized by desorption. The amount of desorbed gas and 
evaporating condensate increases the gas-hydrodynamic characteristics of the filtrational 
flow, and the amount of condensate deposited decreases. With increase in pressure, the 
filtration process is associated with gas-phase absorption on the rock framework and direct 
condensation, which decrease the gasdynamic characteristics of the filtrational flux, as well 
as processes of retrograde evaporation, which increase these characteristics. Taking account 
of the foregoing, the mass-transfer function f may be written in the form 

f(P) = qu(P)- qd(P). 

Mass transfer between the gas-condensate system and the porous medium occurs especially inten- 
sely in argillized collectors, which have good sorptional properties. The amount of gas 
sorbed there may reach 10% of the amount of gas in the pores. The property of creep is 
intrinsic to argillized collectors. This leads to disrutpion of the equilibrium relation 
between the filtration rate and the pressure gradient. In [i], an integral transformation 
was proposed for the description of these phenomena. Then 

v 

! 

k .i' F ( t - - T )  gradP(T) dT, 
o 

(2) 

where F is the kernel of the integral transformation. It is determined from experimental 
data for the various collectors. However, since determining the form of the kernel involves 
differntiating experimentally determined functions, it was proposed in [2] that the form of 

M. Azizbekov Azerbaidzhan Institute of Petroleum and-Chemistry,- Baku. T r a n s i a t e d  from ...... 
Inzhenerno-Fizicheskii Zhurnal, Vol. 48, No. 3, pp. 443-450, March, 1985. Original article 
submitted March 12, 1984. 

328 0022-0841/85/4803-0328509.50 �9 1985 Plenum Publishing Corporation 



the kernel be specified analytically, and the parameters appearing there be determined ex- 
perimentally. On this basis, the kernel is specified in the form 

F (t, ~) = exp [ - -  (t - -  T.)/OI, ( . .3)  

where O is the characteristic relaxation time of the clay. Then, taking account of Eq. (3), 
Eq. (2) is transformed to give 

k (4) v +  0 - - grad P. 
Ot 

Consider the features of nonlinear filtration of gas-condensate systems, taking account 
of mass-transfer processes. 

Neglecting the influence of liquid condensate on the effective porosity of the system, 
and assuming that the porosity m and density p depend only on the pressure, these quantities 
are expanded in Taylor series in the vicinity of the steady state (mo, po, Po), retaining 
terms of second-order smallness 

m = m o  I +[~m(P--Po) 4- --2-- ( P -  p~ ' 
(5)  

P = P o  
[ 2 ] 

1-!-[~o(P--Po)+ ~ (P--Po) ~ �9 

Then 

OP 
i + ([3o + ~,.) ( P -  Po) - - - ~ .  

It is expedient to introduce the functions 

M = pv, 6 (P) = moPo ([~p + ~ )  [ 1 + (~o + ~,~) (P - -  Po)]. 

Assuming that filtration is one-dimensional, and taking account of Eqs. 
tent in Eqs. (I) and (4) is written as follows 

(6) 

(5) and (6), the sys- 

M - /  O OM __ ko9o OP ( 7 )  

Ot Po Ox 

aM 4- a (P) oP 

a T  ' Y = : (P) 

The solution of Eq. (7) will be sought in the class of steady traveling waves in which all 
the dependent variables are a function only of ~ = x -- ut, where u is the velocity of wave 
propagation. In the new coordinate system, Eq. (7) takes the form 

o r  

dM dP 

dP dM 
. . . . . . . .  •  + 0•  - -  

dM - -  [ (P) 4- u• (P) M 
d~ 1 --u~• (P) o 
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dP • 2 1 5  
d~ 1 - - u e •  0 ~ ( P ,  M), ( 9 )  

where x = ~ o / ( k o 9 o )  Qualitative analysis of Eq. (9) may be performed in the phase plane 
(P, M). Expanding the right-hand side of Eq. (9) in Taylor series in the vicinity of singular 
points, while retaining first order terms, and taking into account that dP/d~ = dM/d~ = 0 
at the singular points, or--/(P0) + u• Mo = 0 and XMo--UXOf(Po) = 0 , Eq. (9) may be re- 
placed by the relation 

dP dM 
- -  aP + bM, ,, ~- cP ~- dM, (i0) 

d~ d~ 

where 

o ~ , ( o )  u •  �9 b - o ~  (o)  • . 
a --  OP 1 - -  u 2 •  (0 )  ' OM = - -  1 - -  u ~ •  (0 )  ' 

0% (o) f ;  (o) d a% (o) .• (o) 
OP 1 - -  u 2 •  ( 0 )  OM 1 - -  u~ •  ( 0 )  

Here and below, P and M denote not the pressure and mass flow rate but their deviations rela- 
tive to the singular points. 

The characteristic equation of Eq. (i0) is 

f'- - -  (a + d) ~ + (ad - -  bc) = O. 

The equilibrium state of the system will be stable if [3], a + d < 0 or 
u~x08(0))>0 ; hence, when i u<]/i/0x8 

(-- u•  + ~• (o))/(1 - -  

t ;  < a/o. 

All the trajectories on the phase plane correspond to some steady wave. However, 
tions that are limited in amplitude are of interest from physical considerations, 

(ll) 

since solu- 
the condi- 

tions under which the singular points are centers (corresponding to closed trajectories on 
the phase plane and waves periodic in the coordinate ~) or saddles (Then the trajectories on 
the phase plane correspond to the propagation of a perturbation shifting the system from one 
equilibrium state to another) are analyzed. 

The condition of existence of periodic solutions is that the real part of the roots be 
zero (under the condition that the roots are complex), i.e., a + d = 0, (a + d)2/4 < (ad -- bc) 
when ad - bc > 0. Then from Eq. (I0) 

[(.~'x~o6f; - • --o• 2] < o 

or 

[• - -  xe6u~)l > O. 

When 

periodic oscillations with a limited propagation velocity 
of existence of a saddle is ad -- bc < 0 or 

(12) 

u<I/~ exist. The condition 

[ g < O .  (13) 

The region of pressure variation in which the behavior of the system is qualitatively 
changed is established from analysis of Eqs. (11)-(13). With reduction in pressure, the 
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Fig. i. Possible form of the pressure de- 
pendence of the mass transfer and the corre- 
sponding trajectory on the phase plane (P, M): 
I, III) regions where f'p < 0; II) region where 
0 < f'p < 6/0 (a) and f'p > 6/0 > 0 (b). 

condition f'p > 6/0 corresponds to greater intensity of desorption in comparison with condensa- 
tion; the rate of desorption is higher than the rate of condensation by an amount greater 
than 6/8. In this case, any small perturbations are amplified; the system is unstable (Fig. 
I, region IIb). 

In the pressure range where the desorption rate is higher than the condensation rate by 
an amount less than 6/0 periodic vibrations in the system propagating at limited velocity 
are possible (Fig. i, region IIa). In the case when the condensation processes occur at 
great intensity, i.e., f'p < 0, the perturbations arising in the system are either extinguished 
if there is only one equilibrium state of the system or else transfer the system to another 
equilibrium state (Fig. i, regions I, III). 

Note that, in investigating the system using the phase plane, only the character of the 
steady waves may be established; their development over time and space cannot be investigated. 
These characteristics are investigated by the method of analysis of transient processes de- 
veloped in [4]. In this case, the initial system in Eqs. (i) and (4) is reduced to the 
following form 

0 poko + I f(P). (14) 
~0 OX2 

Approximating qu and qd by linear dependences 

=~u(P--Po--Pu),  qd- -~d(P--Po--Pd ), f (P)=qu--qd  

and taking account of the pressure dependence of m and 0 in the form in Eq. (5), Eq. (14) is 
replaced by the relation 

where 

0 ) 0 (AP+BP 2)= 9oko O~P 
1 + o -57- -5i- 

P-~P '=P- -Po;  A=  m---2-~ " B -  9omo (13~+13~,)~; 1/c~=9o([3o+f3~);. 
c"- ' 2 
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Fig. 2. Graphical analysis of 
the dependence ~ = arc sin n = K~ 
(dashed curve); i) sin -I q; 2) 

Kn. 

or = or u -  OCd; D = CZdP d - -  (ZuPu., 

o r  

( 0 ) O (PiB~P~)=O~P al% ( O ' A 1 1 + 0 - - ~ - -  - ~  c?x---T+p-~o I + O - ~ - ) P + D  l , ,  (15) 

where 

=: 2 2 . A1 ~ mo~o/c'2ko9o; B 1 p~o/2Po c k O, O 1 = Opo/koPo. 

Taking into account that the characteristic relaxation time of the clay 0 much exceeds 
the hydrodynamic time, Eq. (15) is simplified 

0 2 O2P ~o~ OP 
AIO - ~  (P @ BxP ~) 0 - -  -- O. (16)  

Ox ~ ko9 o Ot 

In the absence of nonlinearity (B~ = 0) and mass transfer (a = 0), the solution of Eq. (16) 
will be steady waves of constant profile. If the perturbation P = F(t) is specified on x= 0, 

the solution of Eq. (16) is 

P (x, t) = F (t - -  x ~rF)t~). (17) 

It is natural to assume that, if nonlinearity and mass transfer are present but small, i.e., 
BxP << I, ~ << i, the solution locally takes the form in Eq. (17) but slowly changes its form 
as it moves along x. 

Applying the coordinate transformation ~ = x, T = t --x~10 to Eq. (16), and taking into 
account that 

OP OP OP &r 

Ox O[ 8"~ Ox 

it follows from Eq. (16) that 

a2p2 02p 02p po~ 8P i 
A1BIO OT ~ 0~2 + 2  KA-TO- 0 ] = 0 .  _ a~a[ kopo a~ 

(18) 
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Fig. 3. Change in amplitude of initial perturba- 

tion Ao in the absence of mass transfer (~= = 0). 
Notation as in Fig. 2: a) ~o = ~cr, A = Ao; b) 

~i > ~cr, AI < Ao; c) ~a > ~i, Aa < At, 

Since variation in form of the wave along ~ is assumed to be small, then 32P/3~ = may be 
neglected. Then 

0~ [ 2AIB108T (P 8-~z)q-2 V-~I~ op.o[ - 0  ko9o9~ 0P]  _ & ~  

Integration with respect to T gives 

8P OP 
a--= + 6~P -aT + ~'P = p (~)' (19) 

where F(g) is an arbitrary function. 

61 = / & O  B1, 83 = 

If P(t = 0) = 0, then F($) - 0 

1 t~o(~d--~u) , /  0 
2 ko9o [ /  A1 

In implicit form, the solution of Eq. (19) when F(g) ~ 0 is 

(20) 

, = ~-~ [P exp (6=D] q- (81/83) P [exp (63[)-- l l, 

where ~(t) i s  the p ressure  a t  x = 0. 

Assuming that P(x = O) = Po sin ~t, the solution of the problem may be written in the 
following dimensionless form 

o~-c:=arcsin P exp(63[) q--~-2 ~~176 [1-- exp (-- 63[)l 7~--oo exp(63D. (21) 

It may be analyzed graphically in the coordinates (~T, n): 

P 61coPo 
r l=  exp (62[), K -  [1 --  exp (-- 63[)1, (22) 

Po 63 

o)T = arcsin q -{- K~. 

As is evident from Fig. 2, the function rl and hence also P become multivalued when K~I 
i.e., a shock wave is formed. If there is no mass transfer (~a = 0), the solution takes the 
form 

~  ( p ~ ) ~ l ~  ( p - ~ ) .  
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Fig. 4. Variation in form of initial perturbation: a) 
when 62 > 0, Po < Pcr; b) when 62 > 0, Po >Pcr; c) when 
6a < 0; dahsed curve shows the envelope of the amplitude 
of variation in P/Po. 

The condition for the appearance of a shock wave is f~>l, i.e., 81mP0~l �9 Hence the 
distance ~cr ~I/61~Po, at which a shock wave is formed may be determined; when ~ > ~cr, its 
amplitude decreases and it becomes serrated (Fig. 3). 

In the presence of both nonlinearity (61 0) and mass transfer (6a # 0), the appearance 
and character of shock-wave propagation wave depends on the intensity ratio of the occurrence 
of mass-transfer processes. Assume that ~d > au, i,e., 62 > 0, 

The condition of shock-wave formation, as is evident from Eq, (22), is 

6~P0 
.... 6~ [1 -exp(--62~)]  ~ 1. (23)  

It is obvious that, when 6,mPo/6a < i, i.e,, when Po < 6a/6:m, the shock wave is not formed at 
at any distance ~ as large as may be desired, Hence, the condition of shock-wave formation 

is P0~[62/61m]= Pcr. 

Characteristic variations of the wave when 6a > 0, Po < Pcr, Po~Pcr are shown in Fig. 
4a, b. The critical value Pcr increases as the loss of condensate increases and as the non- 
linearity coefficient decreases. The value of the critical cross section at which shock-wave 
formation occurs is determined from Eq. (23). If a d < a u, shock-wave appearance at a distance 
$cr determined from Eq. (23) is possible with any small perturbation Po. Its amplitude in- 
creases along ~ according to the law Poexp ([6aI~) (Fig. 4c), i.e., in conditions where de- 
sorption processes are more intense than condensation processes (in conditions of depletion), 
the system becomes unstable and any small perturbations are amplified. 

What is the possible propagation velocity of the perturbation? Assume that the compres- 
sibility factor of argillaceous sandstone Bm = 1.5"10 -*~ Pa-~; the compressibility factor of 
the condensate ~p = 14"10 -*~ Pa-~; the density of the condensate Po = 1 kg/m3; the porosity 
mo = 0.i the viscosity ~o = 2 "10-5 Pa.sec. For various argillized collectors, the perme- 
ability ko usually varies in the range i0-13-i0 -~ m =. The relaxation time determined by the 
creep of the argillized rock oscillates over broad limits 10a-107 sec [5, 6]. Then u= 

1 ___~_i 

(A~O) 2 =[mo~o(~p+g,~)OkT~ l 2 - ~ 2 . 1 0 - ~ 2 - 1 0 - 3 .  

NOTATION 

P, pressure !Po, initial pressure in bed); p, density of filtrational flux (po, density 
at pressure Po); v, filtration rate; ~, viscosity of fluid (~o, viscosity at pressure Po); 
m, porosity of collectors (mo, porosity at pressure Po); f(P), pressure-dependent mass-transfer 
function; qu, qd, mass transfer in unit volume per unit time, respectively, increasing and de- 
creasing the filtrational flux; k, permittivity of collector (ko, permittivity at pressure Po); 
F(t, T), kernel of integral transformation; 0, relaxation time of argillized collector; t, 
z, time; x, spatial coordinate; M, mass velocity; u, propagation velocity of perturbation; 
wave; ~u, ~d, intensity of mass-transfer processes. 
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GREEN'S-FUNCTION METHOD FOR SOLVING PROBLEMS OF NONEQUILIBRIUM 

ADSORPTION AND CONVECTIVE DIFFUSION OF IMPURITY IN A MEDIUM 

Yu. N. Gordeev and N. A. Kudryashov UDC 532,546 

The Green's function method is used to solve problems of impurity transfer by a 
carrier-gas flow in a semiinfinite medium, taking account of convective diffusion, 
nonequilibrium adsorption, and radioactive decay. 

In describing the propagation of adsorbed impurity in a porous medium under the action 
of a carriergas, as a rule, account is taken of longitudinal diffusion and mass transfer 
from a gas flow to the adsorbent granule. The convective-diffusion coefficient depends on 
the velocity of carrier-gas motion and the characteristic dimension of the porous medium 
D = Do + Av [I]. Hence it follows that, for a homogeneous porous medium and a constant gas- 
flow velocity, the convective diffusion coefficient is a constant and does not depend on 
the coordinates and the time. The characteristic length of the porous layer, beginning with 
which convective diffusion significantly influence the impurity characteristics, is determined 
from the estimate l~Dto , although in reality the impurity "front" may be distorted on 
account of diffusional blurring at relatively small distances. 

Impurity adsorption is divided into three stages [2]: external mass transfer, the act of 
adsorption, and internal diffusion in adsorbent grains. The second stage usually occurs 
considerably more rapidly than the other two. 

External mass transfer occurs by molecular diffusion to the surface and mixing of impurity 
in the flow and is characterized by a kinetic adsorption coefficient B, which is related to 
the flow velocity and grain size by the dimensionless equation [2] Nu = ARenpr m. For a 
homogeneous porous medium and at constant gas-flow velocity, the kinetic adsorption coefficient 
will also be constant. 

The adsorption kinetics must be taken into account when t ~ B -~, i.e., when the character- 
istic time of the process is comparable with the inverse of the kinetic coefficient. 

If the characteristic grain size of the porous medium satisfies the condition d ~ /Doto, 
the propagation of adsorbed impurity in the porous medium when d~D~1~ to~<l~D -~ is described 
by the following system of equations 

ut -b at -b vu~ @ ?~ (u @ a) = Duxx, 

a t  -~  ~ (u  - -  u * )  - -  ;~a, u *  - -  va. 

(1) 

(2) 
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